Number of events and the upstream veto wall

Reinhard Schwienhorst University of Minnesota

Short report E872 phone meeting, 11/23/99

Outline

- Introduction
- Program
- Plots
- Problem Answer
- Upstream Veto Counters
- Conclusions
- Outlook

Introduction

- There is a discrepancy between the predicted number of events and the observed number of events
- The distribution of events over emulsion modules does not match the prediction

Program

- Generate 6000 events in periods 1-4 in all five modules
 - NC, prompt and nonprompt ν_{μ} CC
- process with my muon finding routines for nustrip files
- include efficiencies for
 - trigger
 - stripping
 - event selection
- compare to data

– example: period 3

Period 3 target weight vs. found # of events

- the predicted number includes NC, v_{μ} CC prompt and nonprompt events • efficiencies are included

Problem:

- The expected number of events is too large by 50%
- The expected number of events in module 0 is too large by 300%
- But we included all efficiencies!(?)

Answer:

- We did not include the veto counters upstream of the emulsion
 - veto lead (mod 0) events with particles going backwards
 from the vertex
 - veto events with particles bent backwards in ROSIE

TOF and energy of particles hitting the upstream veto wall (MC)

 ν_{μ} CC interactions in module 0

 ν_{μ} CC interactions in module 4

Upstream veto counters

- Simply including hits in the upstream veto wall will:
 - Remove 60% of the mod 0 interactions
 - slow protons from the lead move upstream to the veto counters
 - Remove 40% of the interactions in emulsion modules
 - electrons, positrons, and protons are bent by the analysis magnet and travel along the side of the target stand upstream to the veto counters
- MC has no target stand material besides lead shielding

Treatment of veto counter hits

- Ignoring them produces too many module 0 events
- Including them reduces the trigger efficiency to 60%
 - low-momentum particles travelling great distances
- Solution:
 - generate a veto hit if the particle momentum is>0.1GeV

Corrected number of events for period 3

Conclusions

- Including the upstream veto counters will reduce the trigger efficiency for module 0 interactions
 - hundred MeV protons striking the counters
- GEANT has many particles hitting the veto wall that really shouldn't produce a hit
- Introducing a cut of 100MeV on particle momentum gives the correct trigger efficiencies from module to module

Outlook

- I will send my routines to Bruce
- We might need a better plan to implement veto counters
- The overall normalization (total # of events) is not correct yet
 - but already within 20%

